Saturday, November 8, 2008

the structure of striatum

http://www.ploscompbiol.org/article/info:doi%2F10.1371%2Fjournal.pcbi.0020176

Introduction
The basal ganglia of mammals are made up of several nuclei forming large processing circuits in the forebrain and controlled by mesencephalic dopamine (DA) neurons [1]. The dorsal nigrostriatal DA pathway modulates the cortico–striato–thalamic loop [2] involved in extrapyramidal motor and cognitive functions. The ventral mesolimbic DA pathway supports a variety of behavioural functions related to motivation and reward [3]. The functional diversity of the basal ganglia is mirrored by their involvement in pathological conditions as diverse as Parkinson disease, Huntington chorea, schizophrenic syndromes, and drug addiction. The main inputs of the striatum are the excitatory glutamatergic projections from pyramidal neurons of the cortex [4,5]. The GABAergic medium-sized spiny neurons, which comprise more than 95% of the striatal neurons, give rise to two kinds of projections. A direct “stimulatory” pathway projects to the output structures, internal globus pallidus, and substantia nigra pars reticulata, while an indirect, “depressant” pathway projects to the same nuclei via the external globus pallidus and the subthalamic nucleus [6]. The indirect pathway forms an incoherent feedforward loop (that is in the same direction as the direct pathway but with opposite effect), that modulates the effect of the direct pathway. The balance between those two pathways is crucial for the function of basal ganglia. DA released in striatum potentiates the function of the direct pathway, through D1 receptors, and acts as a psychostimulant (enhancing locomotion and elevating mood). In addition, DA inhibits the function of the indirect pathway through D2 receptors. The disappearance of this control contributes to the clinical symptoms of Parkinson disease.